Flux-Vortex Pinning and Neutron Star Evolution

نویسنده

  • M. ALI ALPAR
چکیده

G. Srinivasan et al. (1990) proposed a simple and elegant explanation for the reduction of the neutron star magnetic dipole moment during binary evolution leading to low mass X-ray binaries and eventually to millisecond pulsars: Quantized vortex lines in the neutron star core superfluid will pin against the quantized flux lines of the proton superconductor. As the neutron star spins down in the wind accretion phase of binary evolution, outward motion of vortex lines will reduce the dipole magnetic moment in proportion to the rotation rate. The presence of a toroidal array of flux lines makes this mechanism inevitable and independent of the angle between the rotation and magnetic axes. The incompressibility of the flux-line array (Abrikosov lattice) determines the epoch when the mechanism will be effective throughout the neutron star. Flux vortex pinning will not be effective during the initial young radio pulsar phase. It will, however, be effective and reduce the dipole moment in proportion with the rotation rate during the epoch of spindown by wind accretion as proposed by Srinivasan et al. The mechanism operates also in the presence of vortex creep.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Quantized Magnetic Flux Lines on the Dynamics of Superfluid Neutron Star Cores

We investigate dynamical coupling timescales of a neutron star’s superfluid core, taking into account the interactions of quantized neutron vortices with quantized flux lines of the proton superconductor in addition to the previously considered scattering of the charged components against the spontaneous magnetization of the neutron vortex line. We compare the cases where vortex motion is const...

متن کامل

ar X iv : a st ro - p h / 05 05 07 3 v 1 4 M ay 2 00 5 Neutron Star Superfluidity , Dynamics and Precession

Received ; accepted – 2 – ABSTRACT Basic rotational and magnetic properties of neutron superfluids and proton superconductors in neutron stars are reviewed. The modes of precession of the neutron superfluid are discussed in detail. We emphasize that at finite temperature , pinning of superfluid vortices does not offer any constraint on the precession. Any pinning energies can be surmounted by t...

متن کامل

gluon condensate in pulsar cores explain pulsar glitches ? Raka

Making use of the possibility that gluon condensate can be formed in neutron star core, we study the vortex pinning force between the crust and the interior of the neutron star. Our estimations indicate an increase in pinning strength with the age of the neutron star. This helps in explaining observed pulsar glitches and removes some difficulties faced by vortex creep model.

متن کامل

Effects of the sintering temperature on the flux-pinning mechanism and the activation energy of malic-acid doped MgB2

  The flux-pinning mechanism and activation energy of 10 wt % malic acid-doped MgB2 were investigated by measuring of the critical current density and resistivity as a function of magnetic field and temperature. A crossover field, Bsb, was observed from the single vortex to the small vortex bundle pinning regime. For the sintered sample, the temperature dependence of Bsb(T) at low temperature i...

متن کامل

Frictional Heating and Neutron Star Thermal Evolution

Differential rotation between the neutron star crust and a more rapidly rotating interior superfluid leads to frictional heating that affects the star’s long-term thermal evolution and resulting surface emission. The frictional heating rate is determined by the mobility of the vortex lines that thread the rotating superfluid and pin to the inner crust lattice. If vortex pinning is relatively st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017